
American Sign Language Recognition using Deep Learning

Chandhini Grandhi
A53272378

cgrandhi@eng.ucsd.edu

Sean Liu
A92094374

sel118@eng.ucsd.edu

Divyank Rahoria
A53284395

drahoria@eng.ucsd.edu

Abstract

This paper explores the application of
deep learning to the task of multi-class
classification of American Sign Language
(ASL). We aim to classify every image in the
ASL dataset to one of 29 classes. We develop
a fully convolutional neural network (CNN) to
achieve this on our ASL dataset. With this as
our baseline, we look into how different CNNs
would potentially improve our performance.
We trained our model on a VGG16 network
from scratch and used pretrained weights
to see how transfer learning affects the
performance. Also, we wanted to train the
model with deeper and wider networks to see
the effects on performance, and for this, we
trained with InceptionNet and ResNet50.

1 Introduction
American Sign Language (ASL) is a form of
communication for people with speech impairment,
predominantly used for deaf communities in the United
States and most of Anglophone Canada. The problem
with ASL is that it is a challenge for non-sign language
speakers to communicate with sign-language speakers.
Using deep learning, we tackle this problem using the
ASL dataset available here

This dataset has images of hand gestures of 29
classes. The details of the dataset is explained in
Section 3

2 Related Work
There have been several approaches to address the issue
of translating sign language into text using different
deep learning models in recent years. For example, (5)
uses Inception, Convolutional Neural Network (CNN)
for recognizing spatial features and Recurrent Neural
Network (RNN) to train on temporal features. (6) uses
Convolutional Neural Network (CNN) to predicting
Sign Language and achieved 95% accuracy. (8) uses
Convolutional Neural Network (CNN) and recorded
the weights and model for real-time prediction. (9)
talks about the relevant features of the model, feature
extraction and uses Artificial Neural Network (ANN)

to classify signs. Finally, (10) proposed a system
where they used AdaBoost and Haar-like classifiers
to detect and translate ASL alphabets. We aim to
get better accuracy than previous work and try out
different architectures to compare the performance of
the models.

3 Dataset
The data set contains 87,000 images with 29 classes,
where 26 are for the letters A-Z and 3 classes are for
SPACE, DELETE and NOTHING. These 3 classes are
very helpful in real time applications and classification.
To reduce computation time, we decided to choose
21750 images, or 750 images per class, to be used for
our models.

Figure 1: Input Data Visualization

We preprocessed the data by resizing to 200x200
pixels, using a random shuffle and normalization of the
data. For Inception Net model, we scaled down the
resolution further to 50x50 for faster computation and
lower memory consumption. We split those images
into three sets of training, validation and test set.
Training set has 13920 images, validation set has 3480
images and test set has 4350 images. The visualization
of input data can be seen in figure 1.

4 Methods

4.1 Baseline CNN
CNNs are a deep learning algorithm that takes in
an input image and assigns importance to various
aspects in the image. It captures the spatial and

https://www.kaggle.com/grassknoted/asl-alphabet


temporal dependencies of the image. Each CNN
layer learn filters of increasing complexity. The first
layers learn basic feature detection filters like edges,
corners. The middle layer learn filters that detect parts
of objects. The last layers have higher representations-
they learn to recognize full objects in different shapes
and positions. The CNN used here serves as a basis
for some of the later models such as VGG16 and
InceptionNet.

4.2 VGG16

The next convolutional neural network that we have
attempted to use is VGG16. Essentially, this network
is even deeper than the baseline CNN network from
section 4.1 because it stacks convolutional layers on top
of each other. In other words, instead of just having a
single convolutional layer before a max-pooling layer,
consecutive convolutional layers are used before a
max-pooling layers. In addition, by using multiple
ReLu, or activation, units successively, the decision
function is more discriminative(11). Figure 2 shows
the VGG16 architecture in even further detail(1).

Figure 2: VGG-16 Architecture

4.3 InceptionNet

Furthermore, InceptionNet is a CNN that uses multiple
sized kernels and concatenation. Instead of going
deeper than the baseline CNN like VGG16 from
section 4.2 does by stacking convolutional layers,
it increases the number of layers by widening the
network, parallelizing convolutional layers at the same
stage. An example of the network used is shown
in Figure 3. Essentially, at the same stage of the
network, convolutional layers with filter sizes of 1x1,
3x3, and 5x5 are all used, and the resulting layers are
concatenated depth-wise. Doing this allows capture
of salient features at multiple levels, as both global
features distributed over a large area of the image
and area-specific features distributed across the overall
image can be simultaneously detected and accounted
for(4).

Figure 3: InceptionNet Architecture

4.4 ResNet50
ResNet(3) is one of the most powerful deep neural
networks that achieves great performance by using
excellent generalization in recognition tasks, and
ResNet50 is a variant that is 50-layers deep. ResNet
uses batch normalization that adjusts the input layer
to increase the performance. This helps mitigate
the covariate shift problem. ResNet is similar to
other networks which have convolution, pooling,
activation and fully-connected layers stacked one over
the other. The only difference is construction of
identity connection between the layers as shown in
figure 4. This block of layers with identity connection
is known as residual block, where identity connection
is the curved arrow originating from the input and
sinking to the end of the residual block. Identity
Connection helps protect the network from vanishing
gradient problem.

Figure 4: Residual block

4.5 Loss Function
Categorical cross-entropy loss is used for VGG-
16, InceptionNet. It uses one-hot encoding while
sparse categorical cross entropy loss is used in CNN,
ResNet50 which has an output in the form of labels.
Both the losses are used for multi-class classification.
it compares the distribution of all predictions with the
true distribution. The loss function is given in the
equation 1.

L = −
∑
n

c∑
k=1

tnk ln y
n
k (1)

Where c are the classes, n are all the images tnk is the
target for images n and ynk is the predicted softmax
output for the image.



4.6 Optimizer
4.6.1 Adam
Adam optimizer is used in the base CNN, InceptionNet,
and ResNet50 models. Adam provides an optimization
algorithm that can handle sparse gradients on
noisy problems. We chose Adam because it is
computationally effective and requires little memory
space.

4.6.2 SGD
In addition to using the Adam optimizer, we also
used SGD, or Stochastic Gradient Descent, for both
the VGG16 and VGG16-pretrained models. This is
based on a study in (12), which found that for VGG
specifically, it was found that SGD actually worked
much better in reducing training and testing error, and
Adam actually performed worse than any optimizer
tried. Therefore, using SGD as an optimizer, with a
learning rate of 0.001 would perform better.

5 Experiments
All models were built using Relu activation functions
for all layers and a softmax layer at the output to predict
the classes.

5.1 Experiment 1: Baseline CNN
We experimented by building a deep CNN for the
purpose of classification (2). The overview of our
architecture is we have Convolutional layers to learn
the features of the images, each followed by Max Pool
layers to reduce the number of parameters to learn and
also to help in translation invariance. We have then
used BacthNormalization layers along with Dropout to
reduce the overfitting and to speed up the computation.
We experimented with architectures and found out the
current architecture gave us the best performance. The
architecture is also shown in figure 5.

Figure 5: CNN Architecture

5.2 Experiment 2: VGG16
For VGG16, the model was built from scratch,
modified, and trained exclusively using our dataset.

However, a key drawback with VGG is that it is
slow to train, as training a single epoch took over
a minute. With that in mind, a VGG16 model via
transfer learning with pretrained weights based on
Imagenet was also implemented (7). The overall
network looks similar to that of Figure 2, except with
BatchNormalization and Dropout layers added in a
pattern similar to that of the baseline CNN.

5.3 Experiment 3: InceptionNet
Next, we modified InceptionNet by adding
BatchNormalization layers after each dense layer
and concatenation block to try and prevent overfitting,
and trained from scratch, once again in similar pattern
as the baseline CNN. Image sizes were also reduced
further to 50x50 to lower memory consumption, and
1x1 bottleneck layers were introduced to limit the
amount of feature maps generated. It is clear that with
InceptionNet, training will be much faster especially
compared to the base CNN or VGG models, with
a single epoch taking just 7 seconds. Overall, the
network will be very similar to that in Figure 3.

5.4 Experiment 4: ResNet50
We experimented by building a modified ResNet50
architecture(3) from scratch and trained exclusively
using our dataset. The identity block we used has 3
components and a final step. These components are
built by convolution layers, Batch normalization and
activation layers as shown below.

Figure 6: Identity Block Architecture

The convolutional block has similar architecture and
a shortcut path that eventually gets added to main path
as shown below.

Figure 7: Convolutional Block Architecture

The overview of the architecture is shown in figure
8.

Figure 8: Overall ResNet50 Architecture



6 Results
All models were trained for 70 epochs to maintain
consistency.

6.1 Experiment 1: Baseline CNN
Results obtained from training the baseline CNN from
scratch are presented below. The test accuracy obtained
is 98.02%

Figure 9: Accuracy and Loss vs Epochs for CNN

6.2 Experiment 2: VGG16
Results obtained from training VGG16 from scratch
and through transfer learning are listed below. The
VGG16 model with transfer learning trained only over
15 epochs. Final testing accuracy achieved for the
VGG16 model trained from scratch was 99.74%, while
for the transfer learning model, it was 99.84%.

Figure 10: Accuracy and Loss vs Epochs for VGG16
(trained from scratch)

Figure 11: Accuracy and Loss vs Epochs for VGG16
(with pretrained weights)

6.3 Experiment 3: InceptionNet
Next, results obtained from training InceptionNet are
shown below. The final testing accuracy achieved was
96.76%.

Figure 12: Accuracy and Loss vs Epochs for
InceptionNet

6.4 Experiment 4: ResNet50
The results obtained from training the ResNet50 are
presented below. The final test accuracy achieved was
99.88%, highest among all the models used in this
paper.

Figure 13: Accuracy and Loss vs Epochs for ResNet50

6.5 Visualization of predictions

Figure 14: Visualization of Predictions

To summarize the results, here is the comparative table
for all the tested models over test set in Table 1. Results
for all models are generally very good.

Model Test Accuracy

CNN 98.02%
VGG16 Scratch 99.74%
VGG16 Pretrained 99.84%
InceptionNet 96.76%
ResNet50 99.88%

Table 1: Model Comparison

7 Conclusion
The aim of this project was to find a model with highest
accuracy for the task of multi-class classification
of American Sign Language. In this paper, we
compared four different CNN models for hand gesture
recognition for ASL. Overall, we have found that
ResNet50 achieved the best results training from
scratch, while using pretrained weights for VGG16
proved the effectiveness of transfer learning. These
models can be very effective for the purpose of
ASL translation, and for the future, we hope these
classification networks can be used, built on further,
and even combined with temporal data and recurrent
neural networks to learn sequences of words and
sentences.



References
[1] Convolutional neural network architecture: Forging

pathways to the future.
[2] Data pre-processing and cnn tutorial. https:

//keras.io/examples/mnist_cnn/
,Kagglekernels.

[3] Residual networks tutorial. https://pylessons.
com/Keras-ResNet-tutorial/.

[4] A. Anwar. Difference between alexnet, vggnet, resnet and
inception, May 2020.

[5] K. Bantupalli and Y. Xie. American sign language
recognition using deep learning and computer vision. In
2018 IEEE International Conference on Big Data (Big
Data), pages 4896–4899. IEEE, 2018.

[6] L. Y. Bin, G. Y. Huann, and L. K. Yun. Study
of convolutional neural network in recognizing static
american sign language. In 2019 IEEE International
Conference on Signal and Image Processing Applications
(ICSIPA), pages 41–45. IEEE, 2019.

[7] V. Kommineni. How to use transfer learning for sign
language recognition, Mar 2019.

[8] M. Taskiran, M. Killioglu, and N. Kahraman. A real-time
system for recognition of american sign language by using
deep learning. In 2018 41st International Conference on
Telecommunications and Signal Processing (TSP), pages
1–5. IEEE, 2018.

[9] A. Thongtawee, O. Pinsanoh, and Y. Kitjaidure. A novel
feature extraction for american sign language recognition
using webcam. In 2018 11th Biomedical Engineering
International Conference (BMEiCON), pages 1–5. IEEE,
2018.

[10] V. N. Truong, C.-K. Yang, and Q.-V. Tran. A translator
for american sign language to text and speech. In 2016
IEEE 5th Global Conference on Consumer Electronics,
pages 1–2. IEEE, 2016.

[11] J. Wei. Vgg neural networks: The next step after alexnet,
Jul 2019.

[12] A. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht.
The marginal value of adaptive gradient methods in
machine learning. 05 2017.

https://keras.io/examples/mnist_cnn/, Kaggle kernels
https://keras.io/examples/mnist_cnn/, Kaggle kernels
https://keras.io/examples/mnist_cnn/, Kaggle kernels
https://pylessons.com/Keras-ResNet-tutorial/
https://pylessons.com/Keras-ResNet-tutorial/


Individual Contributions

Chandhini
Worked on preprocessing the data, visualizing images, results and to obtain loss and
accuracy curves so that it is consistent for all the networks. Worked on implementation
and gathering results from CNN model. In the report, contributed to abstract, introduction,
CNN section.

Divyank
Worked on literature survey and listed out all related previous work in this domain
to come up with some initial possible architecture ideas.Worked on implementing
ResNet50 model. In the report, contributed to abstract, Related work, Dataset, ResNet50,
Conclusion and Reference section.

Sean
Worked on literature survey, building training, validation, and test sets/split, and loss
and accuracy curves. Worked on implementation of VGG16 and InceptionNet. In
the report, contributed to abstract, VGG16, InceptionNet, Optimizer, Conclusion and
Reference section.

1



Replies to Critical reviews
Group 36: Group 36 offered a lot of suggestions on how we could improve, and we
have taken most of this into account.
1. It would be better to refer your model as (proposed implementation) because all
other methods also use convolution neural networks
We realized that our CNN label may have been a little misleading, as it was not a
proposed method as it was a baseline CNN method that we use when comparing and
extending it to deeper and wider networks such as VGG and InceptionNet. This has
since been reflected in the paper.
2. How your proposed method is better than VGG16 -Pretrained and Resnet50 because
the later ones seem to give reasonable better accuracy than yours?
Once again, because the CNN label as a proposed implementation is a little misleading,
this has been reflected in our final paper as well. It would be expected for Resnet50 or
VGG16-Pretrained to perform better given they are deeper networks or have pretrained
weights.
3. Can you explain the reason why your model has failed to achieve more than 90
percent accuracy?
While it is not our model, we had realized that our lack of usage for a validation set
allowed the model to overfit for the training data. Once we added a validation set before
using a test set, all models performed much better in terms of testing accuracy.
4. Can you please explain why did you only these architectures for this problem and
comparison? Why not others?
Overall we chose these architectures because of a combination of factors such as
runtime, depth, width, and related research. For example, for Resnet, we were aware
that this was one of the deepest networks with plausibly high accuracy. Likewise, much
of the literature found had experimented with InceptionNet.
5. It would be better to plot all curves in one figure to show comparison.
This has been reflected in the final report.
6. As you have computed training time for each method, it would be better to summarize
your comparison in one plot or histogram.
We have taken this into account, but decided for our final report that including another
plot would take too much space.
7. Please clarify did you use any data preprocessing techniques to improve the results?
If not, please explain the reason. If yes, please explain a little bit about it.
For the most part, data preprocessing included normalization of the data and scaling
and downsampling the data, and this has been reflected in the report.

Group 66: Thank you for your feedback and indeed pre-trained VGG gave us
a really good accuracy and the training was faster for it as well. This shows the
importance of transfer learning on a pretrained model.

Group 59: Thanks for your feedback. Our models did not overfit, to verify this we
further split our training set into train and validation and re-trained our models and it
performed equally good. Also, the test accuracy that was shown as 80% in the demo
was because for the purpose of demo we trained the model only for 50 epochs.

2


